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Phase diagrams of cholesteric films in electric fields 
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Otto-Nuschke-StraBe, 4200 Merseburg, G.D.R. 

(Received 2 February 1990; accepted I1 May 1990) 

Planar films of cholesteric liquid crystals exhibit several types of instabilities in 
electric fields. A periodic equilibrium structure can appear when the field is parallel 
to the helix axis. Conditions for the occurrence of the modulated phase have been 
derived by an analytical theory, which describes long wavelength distortions in the 
vicinity of Lifshitz points. 

1. Introduction 
A classical problem of liquid crystal physics is the director reorientation in 

thin nematic films subject to an external magnetic or electric field. The most familiar 
film instability is the Freedericksz transition of planar oriented nematic liquid crystals 
with positive dielectric anisotropy [I]. This transition starts at a definite threshold 
voltage and leads to a director rotation towards the field direction. The observed film 
textures below and above the threshold voltage are homogeneous, since distortion 
gradients in the film are perpendicular to the bounding plates. Recently, Lonberg and 
Meyer [2] have found both experimentally and theoretically that instead of the 
Freedericksz transition a periodic equilibrium structure visible as a striped texture 
appears, when the elastic anisotropy of the nematic material is large enough. Main- 
chain polymeric liquid crystals seem to be suitable for the formation of a periodic 
pattern. 

Field-induced periodic distortions of cholesteric films have been well known 
for a long time. Hurault [3] obtained a formula for the threshold field strength 
of modulation in a cholesteric phase with the helix axis parallel to the applied 
field. Chigrinov et al. [4] have improved this theory by taking into account 
boundary conditions. They have found that there is a competition between 
the Freedericksz effect and the tendency of cholesteric films to form a modulated 
structure. If the ratio of the film thickness and the helix pitch is small a Freedericksz 
transition takes place. But for sufficiently large total twist angles of the director 
a modulated phase emerges from the initial state above a definite threshold 
voltage. The periodic distortions are visible as a striped texture. Thus three 
phases have to be taken into consideration, namely the initial film state, the distorted 
state after a Freedericksz transition and a modulated phase. Allender has claimed 
[5] that these phases meet at a Lifshitz point in a suitably constructed phase 
diagram. Close to Lifshitz points the wavevector of the modulated phase tends to 
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zero. Exactly the same behaviour has also been predicted for nematic films, when the 
ratio of the elastic constants for twist and splay distortions approaches a critical 
value [2,6]. 

In this paper we discuss the main results of an amplitude equation for cholesteric 
film distortions, which is valid in the vicinity of Lifshitz points. More involved 
calculations deriving this equation are presented in [7]. It turns out that a criterion can 
be applied to decide, whether a striped texture appears after applying an electric field 
or not. Such a criterion is also of practical importance, as cholesteric films are widely 
used in display devices [8]. The occurrence of a periodic pattern can inhibit the 
application of strongly twisted cholesteric films [9]. 

Figure 1 shows, schematically, the geometry of a cholesteric layer which is con- 
fined between the bounding plates X = 0 and X = d. The tilt angle, 8, is enclosed 
between the preferred direction of the long molecular axes (the director) and the plane 
X = constant. At the lower and upper plate 8 has fixed values q, and q 2 ,  respectively. 
The azimuthal angle 0 grows gradually with increasing X by a. 

Periodic distortions are oriented with the wavevector parallel to the Y axis 
of a Cartesian coordinate systems, so that the stripes are parallel to the Z 
axis. The wavevector of the distortions and the projection of the director on to the 
lower plate enclose a definite angle 2. For convenience we shall use dimensionless 
coordinates 

7tX Z Y  
x = - a n d y = -  d '  d 

Figure I .  Geometry of a twisted cholesteric film. 0, is the angle between the director and the 
plane X = constant; Q, is the azimuthal angle of the director; a is the maximum twist 
angle; 11, , q 2 ,  are the surface tilt angles; and X, is the angle between the wavevector of 
the periodic distortions and the director projection on to the lower plate 
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2. Freedericksz transition 
Near to the threshold voltage the Freedericksz transition of a cholesteric film can 

be described by an analytical theory [lo]. We introduce the notation 

a w = -  
n ’  

2nd 
Pu ’ 

p = -  

where K , ,  , K22 and K,, are elastic constants defined in the framework of the Oseen- 
Frank theory [I], P i s  the helix pitch of the cholesteric material, E~~ and cl are dielectric 
constants measured parallel and perpendicular to the director, respectively ( E ~ ,  > E ~ ) .  

When the surface tilt angles q l  and q2 are zero, the Freedericksz threshold voltage is 
[ I  11 

UF = UOJR, ( 3 )  
with 

R = 1 + 02(k3  - 2k2 + 2k2p). (4) 

The voltage ratio 

u - u, 
UF P = -  

is assumed to be small in all of the formulae presented in this paper. Here U is the 
effective value of an alternating voltage applied across the thin layer. Close to the 
Freedericksz threshold of the cholesteric film the director orientation is determined by 

1 0 = b,sinx, 

Q, = + + (  k3 - 2k2 -k k 2 p )  bisin 2 x 1  . 1 
4k2 

According to Raynes [ 1 I ]  the distortion amplitude bo obeys the equation Bb; = p R ,  
where 

Depending on the sign of B either a supercritical ( B  > 0) or a subcritical bifurcation 
( B  < 0) results. If there are small non-zero surface tilt angles q l  and q 2 ,  then 6,  
satisfies the extended equation [ 10) 

(8) 2rl -pRbo + Bbi = - , n 

with 
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Figure 2. Schematic representation of bifurcation diagrams. -, stable branches; - - -, 
unstable branches; (1) B > 0, q = 0; (2) B > 0, q # 0; (3) B < 0, q = 0; (4) B < 0, 
q # 0; b,, is the distortion amplitude and U, is the applied voltage. 

Plotting b, versus the applied voltage U we obtain bifurcation diagrams presented in 
figure 2. When q # 0 and B > 0 film distortions grow rapidly in a relative narrow 
voltage interval. In the opposite case B < 0 the film becomes unstable at a turning 
point ( U  = U2),  so that the director configuration changes discontinuously towards 
a strongly distorted state. 

3. Amplitude equation for long wavelength modulations 
A general mathematical description for the transition of cholesteric films to 

modulated equilibrium structures is rather complicated. However, simplifications are 
possible when the wavevector of the periodic distortions is small. As is well known 
from the theory of multicritical points [ 12,131, long wavelength modulations appear 
in the vicinity of Lifshitz points. Actually, provided that q = 0, such points exist in 
the phase diagrams for cholesteric film instabilities [14]. 

The influence of weak boundary tilt angles (Jql 4 1) on the phase diagrams is 
discussed separately in $6. 

To lowest order of magnitude the perturbation theory [7] leads to 
0 = b(y)sinx, 

Q, = R + F(x)by, 

R = cox+&? 
where 

and 

(9) 

db 
dy * 

b = -  

(Now the origin of Q, is the y axis, so that Q, (x = 0) = &? at the lower plate and Q, 

(x = x) = &? + a at the upper one.) The distortion amplitude b ( y )  obeys the 
differential equation 

-AbYyyy + 6byy + pRb - Bb3 = 0, (10) 
which is valid for small control parameters 6 and p. F(x)  and 6 are defined in the 
following way. Introducing an integral operator In by 

In(f(x)) = - - 
n 
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we find 

where 
f(x) = (T)sinncosx 1 - k2 

Analogously, we define 
w(x) = ycosRsinx 

and 
W(x) = In(w(x)). 

Using the expression 

dF(x) M(x) = (1 - k,)sinQ-- dx 

+ (1 + k3 - 2kz + ~~, /? )ucosQF(x)  

+ RcosnW(x), (16) 

- (k, sin2R + k, cod 0) sin x 

a parameter dependent integral 

is obtained. Let 6* (X)  have its absolute minimum for X = 2,. If X, obeys 
71 

0 or - if a = 0, 
2 

(n is an integer), (18) 
2% = { a 

2 
- - + + n n  if a # O ,  

40 60 80 100 
W" 

Figure 3. Equation (10) is applicable in the region above a curve in a k3 - a diagram. Here 
such a limit is drawn for the case y = 1 and /l = 0.5. 
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then the coefficient 6 is determined by 

6 = 6*(X = Xm). (19) 

Equation (18) is a self-consistency condition for the perturbation theory derived in [7] 
and turns out to be valid in a large region of the parameter space. However, as we can 
see in figure 3 condition (18) is not satisfied for small non-zero angles a and small 
values of k3.  A procedure to determine the coefficient A in equation (10) is presented 
in the Appendix. 

4. Phase diagram with a Lifshitz point 
An investigation of equation (10) reveals that there is a competition between the 

Freedericksz transition with threshold pF = 0 and a transition to a modulated 
structure, which appears at a threshold p s  < 0 when the condition 

6 < 0  

is satisfied. Then the uniform state b = 0 is unstable with respect to long wavelength 
modulations. Generally, inequality (20) is sufficient but not necessary for the existence 
of a modulated phase. However, if the conditions 

A > O  and B > O  (21) 

are also satisfied, equation (10) describes the film states in the vicinity of a Lifschitz 
point [ 12,131, whose position is determined by 

p = 0 and 6 = 0. 

Close to Lifshitz points a detailed description of different phases is possible in a simple 
manner. 6 depends on several material parameters. It is convenient to choose k ,  as an 
independent variable. Let K be the critical value of k 2 ,  which is obtained by 
6(k2 = K )  = 0. When terms proportional to (k, - K ) 2  are neglected, we can write 

6 = a(k, - K ) ,  

where 

is usually positive. Now the phase diagram shown in figure 4 results from equation 
(10) according to the general theory of Lifshitz points [13]. Obviously, if k,  > K only 
the Freedericksz transition is possible, whereas in the opposite case k,  < K a modu- 
lated phase emerges from the initial director configuration at  a voltage below the 
Freedericksz threshold U,. The modulated phase is stable within the voltage interval 

where 

p, = --  
4AR ' 

6, 

p2  = JZAR' 
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k2 

K 

I 

I 
I 
I 
I 

I 
b=O b =  const. .) 0 

/ 
/ 

periodic 
distortions 

Figure 4. Phase diagram of a cholesteric layer containing a Lifshitz point L. -, discontinuous 
transition; - - -, continuous transition. 

5. Criterion for the occurrence of the modulated phase 
The set of Lifshitz points obtained by the equation 6(k,,  k , )  = 0 defines a line in 

a k, - k,  diagram, when the other parameters a, /l and y are fixed. Above this line 
k, > K is obeyed and according to figure 4 only the Freedericksz transition takes 
place. Below the line of Lifshitz points a periodic pattern appears. Thus there is a 
simple possibility to decide, whether a striped texture emerges from the initial state 
b = 0 or not. 

As illustrated in figures 5, 6 and 7 the existence region of the modulated phase 
becomes more extended by increasing a and fl and reducing y. All of the curves plotted 
in these figures are sets of Lifshitz points obeying conditions (21). In other cases, when 
the conditions (21) are not satisfied, criterion (20) should be also useful to estimate 
the existence region of a modulated structure in the film. 

0.5 1 2 k3 
Figure 5. Lines of Lifshitz points for different twist angles. Below each line in the diagram a 

modulated phase is stable within the voltage interval (equation (25)). In the region above 
a line only the Freedericksz transition takes place. p = 0.67 and y = 1; (1) a = 135'; 
( 2 )  a = 200'; (3) a = 225'. 
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0.5 1 2 k3 

Figure 6. Lines of Lifshitz points for a = 135" and y = 1, (1) fl  = 0.33; (2) p = 0.5; 
(3) j? = 0.75. 

0.5 1 2 k3 
Figure 7. Lines of Lifshitz points for a = 180" and fi  = 0.5. (1) y = 0.5; (2) y = 1.0; 

(3) y = 2.0. 

6. Small pretilt angles at the boundaries 
More realistic boundary conditions imply small surface tilt angles q ,  and qz (see 

figure 1). For this case an extended time dependent amplitude equation 

(27) 

can be derived [7], where t is the time measured in dimensionless units. Because of the 
symmetry breaking term 2q/n continuous phase transitions do not occur and any film 
instabilities are accompanied with a jump of b. Provided that A > 0, equation (27) 
is suitable to determine the condition for neutral stability of the uniform state b = 6,. 
Inserting in equation (27) the transformation 

2rl b, + AbYyyy - 6byy - PRb + Bb3 - - = 0 
n 

b(T9.Y) = 60 + S(T9.Y)  

and taking into account equation (8) we find 

S, = - Asyyyy + asyy + ( P R  - 3b;B)s, (29) 
where non-linear terms are omitted. 

number q 
Stability of the uniform state implies that any possible perturbation with wave- 

s = soexp(pt -f- iqy) (30) 
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relaxes back (p(q) < 0). If the initial state b = b,, is unstable, the wavenumber for the 
fastest growing mode is 

qm = J - % e  6 1 .  

Neutral stability is achieved when 

P ( 9 m )  = 0. (32) 

As A > 0 we conclude from equation (31) that condition 6 < 0 is necessary for the 
occurrence of a periodic pattern. Combining equations (29), (30), ( 3 1 )  and ( 3 2 )  yields 

a2 = 4A(3biB - p R )  

and eliminating p R  by using equation ( 8 )  we find 

Equations ( 8 )  and ( 3 3 )  represent the condition of neutral stability for the homogeneous 
film state b = b,. However, it should be noted, that we only consider the case of small 
surface tilt angles obeying 

r]1’3 < ( 2 4 ~ 1 ) ~ ’ ~ .  (34) 

6.1. Line of neutral stability for B > 0 
Using b, > 0 as a freely varying parameter in equations ( 8 )  and ( 3 3 ) ,  a line of 

neutral stability in a plot of k2 versus U / U F  = 1 + p can be computed. This line 
encloses the region in which the film state b = b, is unstable and a striped texture 
must occur. The diagram in figure 8 refers to a nematic film with a = 0. However the 
topological features of the diagrams are not changed if a # 0 as long as conditions (21) 
are satisfied. It can be seen by comparing figures 8 and 4, that the phase diagrams for 
r]  # 0 differ considerably from those for r]  = 0, as in the former case a Freedericksz 
transition with a sharp threshold does not occur. 

0.5 1.0 Y 
U F  

Figure 8. Phase diagram for non-zero surface tilt angles (9  # 0) and B > 0. Below the lines 
of neutral stability a modulated phase must appear. Here this line is drawn for the case 
o! = 0, k, = 1.5, y = 1 and q = 0.1’. The cross indicates the position of a Lifshitz point 
appearing when q = 0. 
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Of practical interest is the maximum value K, of k, at  which the phase region of 
the striped texture ends (see figure 8). A straightforward calculation leads to the result 

Kl = K - Lq‘”, (35) 
where 

and K is obtained from the equation 6(k2 = K) = 0. Obviously, small surface tilt 
angles shift considerably the phase region of periodic distortions toward lower values 
of k2. It is also possible to determine a critical value 

of q above which periodic distortions are completely suppressed. For example, if 
k2 = 0.5, k, = 1.5, a = 180”, /3 = 0.6 and y = 1.5 film modulations disappear for 
q > qc with qc = 0.5”. 

6.2. Case B < 0 
If B < 0, a modulated phase always exists for 6 < 0 (or k, < K) independently 

of q.  (However this conclusion is restricted to small surface tilt angles obeying 
condition (34).) Then periodic distortions should be stable within the voltage interval 

where p ,  and p, are defined by 

pi = - - (’q - - Bb2 , )  (i = 1,2) 
R nb, 

with 

6,  = (- L 2nB + JD)”~  - (L 2nB + J.)w , \  

(39) 

and 

D = (--&J+(&J. 
b, = b,* is the value of b, at the turning point of curve (4) in figure 2. 

The voltage interval (38) is often rather small. In the special case q = 0 we find 

6, u 
1 -- < - < l .  

4AR U ,  
For example, if a = 180”, q = 0, k, = 0.5, k, = 1.5, /3 = 0-6 and y = 1 periodic 
distortions occur in the narrow region 0.97 < U/U,  < 1. This region becomes still 
smaller for non-zero surface tilt angles. 
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With increasing twist angle a beyond 180" the value of A is reduced and the phase 
region of the modulated structure is extended considerably. However if A is too small, 
or if A < 0, the analytic theory fails, as the wavenumber qm for the fastest growing 
distortion mode is no longer defined by relation (31). 

7. Comparison with experimental results 
Chigrinov el al. [4] have investigated, both experimentally and theoretically, 

cholesteric films in wedge-shaped cells. Since the film thickness varies in the cell, there 
is also a variation of j in each Grandjean zone, whereas the other parameters 
k ,  = 0.67, k3 = 1.25 and y sz 0 are fixed (q = 0). The experimental results confirm, 
that equation (18) for the angle H ,  is valid. If a = 180' the parameter p must satisfy 
0.5 < p < 1.5. For this Grandjean zone condition (20) is obeyed and a modulated 
phase results in agreement with the findings in [4]. It turns out that the Lifshitz point 
is not observable in the present case, because for the critical value pL = 0.2 a film with 
twist angle a = 180" is not stable. 

As a second example we consider the case a = 90" and 0 < p Q 2. From con- 
dition 6 = 0 we find the critical value BL = 0.84 for the Lifshitz point. Actually, 
figure 6 in [4] suggests that the wavenumber qm goes to zero in the Grandjean zone 
with twist angle a = 90" for the wedge-shaped cell. However more sensitive experi- 
ments for checking the theory would be desirable. 

Appendix 
Coeficient A in differential equation (10) 

The functions F(x), W(x)  and M(x) are already defined in the text. Furthermore, 
introducing 

P(x) = M(x) - sin x J dt sin <M(<) ,  
7l 0 

we obtain 

d<sin(x - <)P(<). (A 2) 

In the next step the functions C(x) and H ( x )  are defined by 

C(x) = In(c(x)), (A 3) 

c(x) = yD(x)cosR - (1  + ycos2R)W(x) (A 4) 

H(x) = In(h(x)), (A 5 )  

where 

and 

where 

W X )  k,h(x) = - (sin2R + k,cos2R)F(x) + (1 - k,)sinR - dx 

- (k3 - k,  + ~ ~ ~ ~ ) w c o s R D ( x ) .  (A 6) 
Finally, A is obtained by integration 

A = Ion dxsinxT(x), (A 7) 
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with 

P. Schiller and K. Schiller 

dH(x) T(x) = wcosQ(1 + k, - 2k, + 2k2P)H(x) + (1 - k,)sinQ- dx 
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